Abstract

Silicon nitride (Si3N4) materials with 1.8 and 5.3 vol.% of multi-walled carbon nanotubes (MWCNTs) were densified using 7 wt% of sintering additives (Y2O3 +Al2O3). The mixing and sintering procedures produced quite homogenous and dense MWCNT/Si3N4 composites. The nanotubes condition was followed by micro-Raman spectroscopy and no alteration was observed in spite of the relatively high sintering temperatures (approximately 1600 degrees C). Mechanical parameters (hardness, elastic modulus and fracture toughness) of the composites and comparative blank specimens were measured by instrumented indentation and discussed in parallel. Thermal conductivity was also estimated for these specimens. The nanotube orientation effect inherent to pressure assisted sintering methods and the weak interfacial bond between nanotubes and Si3N4 are important factors to explain the mechanical and thermal behaviours of these composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call