Abstract

Feature extraction remains an important part of low-level vision. Traditional oriented filters have been effective tools to identify features, such as lines and edges. Steerable filters, which can be adjusted at arbitrary orientation, have made decisions of feature orientations more precise. Combined with a pyramid structure of a multiscale representation, these filters can provide a reliable and efficient tool for image analysis. This paper takes advantage of multiscale steerable filters in the context of de-noising. First a set of novel filters are designed, that decompose the frequency plane into distinct directional bands. Next, we identify the dominant direction and strength at each point of an image from quadrature pairs of steerable filters. A nonlinear threshold function is then applied to the filtered coefficients to suppress noise. The denoised image is restored from coefficients modified at each level of transform space. We demonstrate the benefits of multiscale steerable filters for de-noising and show that it can greatly reduce noise while preserving image features. Two examples are presented to verify the efficacy of the technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.