Abstract

Low-count SPECT images are well known to be smoothed strongly by a Butterworth filter for statistical noise reduction. Reconstructed images have a low signal-to-noise ratio (SNR) and spatial resolution because of the removal of high-frequency signal components. Using the developed robust adaptive bilateral filter (RABF), which was designed as a pre-stage filter of the Butterworth filter, this study was conducted to improve SNR without degrading the spatial resolution for low-count SPECT imaging. The filter can remove noise while preserving spatial resolution. To evaluate the proposed method, we extracted SNR and spatial resolution in a phantom study. We also conducted paired comparison for visual image quality evaluation in a clinical study. Results show that SNR was increased 1.4 times without degrading the spatial resolution. Visual image quality was improved significantly (p < 0.01) for clinical low-count data. Moreover, the accumulation structure became sharper. A structure embedded in noise emerged. Our method, which denoises without degrading the spatial resolution for low-count SPECT images, is expected to increase the effectiveness of diagnosis for low-dose scanning and short acquisition time scanning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.