Abstract

Abstract. The wavelet threshold method is widely used in signal denoising. However, traditional hard threshold method or soft threshold method is deficient for depending on fixed threshold and instability. In order to achieve efficient denoising of echo signals, an adaptive wavelet threshold denoising method, absorbing the advantages of the hard threshold and the soft threshold, is proposed. Based on the advantages of traditional threshold method, new threshold function is continuous, steerable and flexibly changeable by adjusting two parameters. The threshold function is flexibly changed between the hard threshold and the soft threshold function by two parameter adjustments. According to the Stein unbiased risk estimate (SURE), this new method can determine thresholds adaptively. Adopting different thresholds adaptively at different scales, this method can automatically track noise, which can effectively remove the noise on each scale. Therefore, the problems of noise misjudgement and incomplete denoising can be solved, to some extent, in the process of signal processing. The simulation results of MATLAB show that compared with hard threshold method and soft threshold method, the signal-to-noise ratio (SNR) of the proposed de-noising method is increased by nearly 2dB, and 4dB respectively. It is safely to conclude that, when background noise eliminated, the new wavelet adaptive threshold method preserves signal details effectively and enhances the separability of signal characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.