Abstract
The electrocardiogram (ECG) signal carries vital information related to cardiac activities. While measuring ECG using electrodes, the signal is contaminated with powerline interference (PLI) from harmonics, baseline wandering (BW), motion artefacts (MA) and high frequency (HF) noise. The extraction of the ECG signal, without the loss of useful information from the noisy environment, is required. Therefore, the selection and implementation of an efficient filter design is proposed. The Finite Impulse Response (FIR)-based multiband needs separate digital filters, such as Lowpass, Highpass, and Bandstop Filter in cascade. The coefficients of the FIR multiband filter are optimised using a least squares optimisation method and realised in a direct form symmetrical structure. The capability of the proposed filter is evaluated on a Physionet ECG ID database, having records of inherent noisy ECG signals. The performance is also verified by measuring the power spectrum of the noisy and filtered ECG waveform. Also, the feasibility of the proposed multiband filter is investigated on Xilinx ISE and the design is implemented on a field programmable gate array (FPGA) platform. A low order simple multiband filter structure is designed and implemented on the reconfigurable FPGA device.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.