Abstract

Noise in diffusion-weighted (DW) images increases the complexity of quantitative analysis and decreases the reliability of inferences. Hence, to improve analysis, it is often desirable to remove noise and at the same time preserve relevant image features. In this paper, we propose a tight wavelet frame based approach for edge-preserving denoising of DW images. Our approach (i) employs the unitary extension principle (UEP) to generate frames that are discrete analogues to differential operators of various orders; (ii) introduces a very efficient method for solving an ℓ0 denoising problem that involves only thresholding and solving a trivial inverse problem; and (iii) groups DW images acquired with neighboring gradient directions for collaborative denoising. Experiments using synthetic data with noncentral chi noise and real data with repeated scans confirm that our method yields superior performance compared with denoising using state-of-the-art methods such as non-local means.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.