Abstract
Dengue fever, spread by mosquitoes, affects about 3.9 billion people worldwide. Health officials could use indicators of dengue fever outbreaks to start taking preventative measures. Controlling dengue fever may be more straightforward for local authorities if they have timely and accurate disease forecasts. As one of the most rapidly spreading diseases globally, dengue fever is a threat to everyone. Dengue outbreaks can be predicted using machine learning, according to this study. Dengue prediction models could benefit from nature-based algorithms being boosted or used. The only thing that mattered in the prediction and training model was the week of the year, which was the only thing that signified. A standard machine learning algorithm cannot simulate long-term dependencies in time-series data, which is necessary for accurate projections in Dengue fever cases. When it comes to developing risk criteria for severe Dengue, machine learning could be a valuable implement in determining the possible behavior to formulate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: iRASD Journal of Computer Science and Information Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.