Abstract

Involute spur gears are key machine elements for power transmission in various industrial sectors. During power transmission, the teeth are subjected to high stresses. Many design modifications are used to reduce these stresses, such as increasing the drive side pressure angle and profile shifting factor. These modifications change the contact ratio and center distance of the gear pair. Changing the tooth thickness is another solution to reduce stress. Because there is a difference in the number of teeth between the pinion and the gear, the pinion stress levels are higher than the gear for the same gear parameters. The tooth thickness value in the pitch circle is equal to 0.5xπm for both pinion and gear as standard. Stress compensation can be achieved by increasing this thickness at the pinion and decreasing it at the same rate at the gear. In this study, first of all, 3D designs of gears with non-standard thickness were created in CATIA and finite element analyzes were performed to obtain tooth thickness values that create equal root stresses for pinion and gear with various tooth numbers. According to preliminary results, tooth deformation and stress has a linear relationship with tooth thickness value, nearly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.