Abstract
AimTo explore the change of clock gene rhythm under renal denervation (RDN) and its effect on renal function and oxidative stress during renal ischemia-reperfusion (IR) injury. MethodC57/BL6 mice were randomly divided into 4 groups at daytime 7 A M (zeitgeber time [ZT] 0) or at nighttime 7 P M (ZT12) in respectively: Sham (S) group, RDN group, IR group and RDN + IR (DIR) group. Renal pathological and functional changes were assessed by H&E staining, and serum creatinine, urea nitrogen and neutrophil gelatinase-associated lipocalin levels. Renal oxidative stress was detected by SOD and MDA levels, and renal inflammation was measured by IL-6, IL-17 A F and TNF-ɑ levels. BMAL1, CLOCK, Nrf2 and HO-1 mRNA and protein expressions were tested by qPCR and Western Blot. ResultCompared with S groups, the rhythm of BMAL1, CLOCK and Nrf2 genes in the kidney were disordered in RDN groups, while renal pathological and functional indexes did not change significantly. Compared with IR groups, renal pathological and functional indexes were significantly higher in the DIR groups, as well as oxidative stress and inflammation in renal tissues. The nocturnal IR injury in the RDN kidney was the worst while the BMAL1, Nrf2 and HO-1 expressions were the highest. In DIR groups, renal injury was aggravated after the Brusatol treatment, but there was no significant improvement after the t-BHQ treatment at night, which might be consistent with the changes of Nrf2 and HO-1 protein expressions. ConclusionRDN lead to the disruption of BMAL1-mediated Nrf2 rhythm accumulation in the kidney, which reduced the renal ability to resist oxidative stress and inflammation, due to the impaired effect of activating Nrf2/ARE pathway in renal IR injury at nighttime.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have