Abstract
One of the keystone tree species in subalpine forests of the western United States â whitebark pine (Pinus albicaulis, hereafter whitebark pine) â is experiencing a significant mortality event (Millar et al. 2012). Whitebark pine occupies a relatively restricted range in the high-elevation ecosystems in the northern Rockies and its future is uncertain. The current decline of whitebark pine populations has been attributed to pine beetle infestations, blister rust infections, anthropogenic fire suppression, and climate change (Millar et al. 2012). Despite the knowledge that whitebark pine is severely threatened by multiple stressors, little is known about the historic capacity of this species to handle these stressors. More specifically, it is unknown how whitebark pine has dealt with past climatic variability, particularly variation in the type of precipitation (rain vs. snow) available for soil moisture, and how differences in quantity of precipitation have influenced the establishment and growth of modern stands. We propose to study the past responses of whitebark pine to paleoclimatic conditions, which would be useful to park ecologists in developing new conservation and regeneration plans to prevent the extinction of this already severely threatened high-elevation resource. The purpose of this study is to determine in great temporal and spatial detail the demographics of the current stand of whitebark pine trees in the watershed surrounding an unnamed, high-altitude pond (known informally as Whitebark Pine Moraine Pond) located approximately 3.06 miles NW of Jenny Lake in Grand Teton National Park (GTNP). The main objectives of this study were: 1.) To obtain the precise GPS locations of the current stand of whitebark pine trees in the watershed to generate a GIS map detailing their locations. 2.) To obtain increment cores of a subset of the trees in the watershed to estimate age and date of establishment for the current stand of whitebark pines, with particular attention to fire history. 3.) To analyze ring widths from core samples to identify climatic indicators that may influence the regeneration and survival of whitebark pine.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have