Abstract

A new scenario has been unraveled recently—the interaction between the human dendritic cell (DC) and Mycobacterium tuberculosis. Whether this encounter represents a defense mechanism by the invaded host, or a smoke screen, masking the presence of an invader is still unknown. The intracellular behavior of M. tuberculosis inside DCs differs compared to macrophages (Mφs), with a failure of replication. The intracellular compartment of the DC, disconnected from the exocytic and endocytic pathways, and characterized by the absence of endoplasmic reticulum and Golgi features, places M. tuberculosis in a hostile environment, where a ready source of nutrients is scarce. The differential behavior inside Mφs and DCs is linked to a different portal of entry. DCs harbor surface lectins receptors, like DC-specific intercellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN/CD209), a binding site which is absent on Mφs. This receptor interacts exclusively with M. tuberculosis. The ligand is the mannose-capped lipoarabinomanan (LAM), absent from atypical mycobacteria. M. smegmatis, M. chelonae and M. fortuitum, which possess LAM capped with phosphoinositides residues, do not bind to DC-SIGN, demonstrating a role for DC-SIGN as a ‘pattern-recognition receptor’ with the ability to differentiate between pathogenic and non-pathogenic mycobacteria. Interactions of M. tuberculosis with DC-SIGN have antiinflammatory effects. Whether this property is of benefit to the invader remains to be discovered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call