Abstract

The tracer, cholera toxin-horseradish peroxidase, was used to determine the dendritic architecture and organization of hypoglossal motoneurons in the rat. In 22 animals, the tracer was injected unilaterally into either the geniohyoid, genioglossus, hyoglossus, or styloglossus muscle. Within the hypoglossal nucleus, motoneurons innervating the extrinsic tongue muscles were functionally organized. Geniohyoid and genioglossus motoneurons were located within the ventrolateral and ventromedial subnuclei, respectively, while hyoglossus and styloglossus motoneurons were located within the dorsal subnucleus. Motoneurons located in all subnuclear divisions were found to have extensive dendrites that extended laterally into the adjacent reticular formation and medially to the ependyma. Less extensive extranuclear dendritic projections were found in the dorsal vagal complex and median raphe. Prominent rostrocaudal and mediolateral dendritic bundling was evident within the ventral subnuclei and dorsal subnucleus, respectively. Dendritic projections were also found extending inter- and intrasubnuclearly with a distinct pattern for each muscle. These data suggest that the varied and extensive dendritic arborizations of hypoglossal motoneurons provide the potential for a wide range of afferent contacts for, and interactions among, motoneurons that could contribute to the modulation of their activity. Specifically, the prominent dendritic bundling may provide an anatomic substrate whereby motoneurons innervating a specific muscle receive and integrate similar afferent input and are thus modulated as a functional unit. In contrast, the extensive intermingling of both inter- and intrasubnuclear dendrites within the hypoglossal nucleus may provide a mechanism for the coordination of different muscles, acting synergistically or antagonistically to produce a tongue movement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call