Abstract

To formulate dendrimer-stabilized smart-nanoparticle (DSSN; pD-ANP-f) for the targeted delivery of the highly hydrophobic anticancer drug, Paclitaxel (PTXL). The developed nanoformulations were evaluated for particle size, surface-charge, loading efficiency, particle density, in-vitro drug release, SEM/TEM, cytotoxicity assay, fluorescence uptake, HPLC quantitative cell uptake assay, flow cytometry, tubulin polymerization, and stability assessments. The developed pD-ANP-f nanoformulation (135.17 ± 7.39 nm; -2.05 ± 0.37 mV and 80.11 ± 4.39% entrapment) exhibited a pH-dependent drug release; remained stable in physiological pH, while rapid releasing PTXL under tumorous environment (pH 5.5). The cytotoxicity assay performed in cervical, breast, blood, and liver cancer cell lines showed pD-ANP-f to be strongly suppressing the growth of cancer cells. We investigated the fluorescence based intracellular trafficking and HPLC based cellular uptake of nanoformulated drug and the result indicates higher cellular uptake of pD-ANP-f compared to other formulations. pD-ANP-f prominently induced apoptosis (73.11 ± 3.84%) and higher polymerization of tubulins (59.73 ± 6.22%). DSSN nanoformulation was found to be extremely biocompatible (<1% hemolytic) compared to naked PTXL (19.22 ± 1.01%) as well as PTXL-dendrimer nanocomplex (8.29 ± 0.71%). DSSN strategy is a novel and promising platform for biomedical applications that can be effectively engaged for the delivery of drug/gene/siRNA targeting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call