Abstract

In this study, the PEG-Glu-Lys-Glu copolymer drug delivery system (GO/PEG-Glu-Lys-Glu) is prepared using glutamate-lysine-glutamate (Glu-Lys-Glu) modified polyethylene glycol (PEG) and connected graphene oxide nanosheets (GO). The multiple carboxyl groups of Glu-Lys-Glu and π–π interactions of GO can increase drug loading rate, and the fluorescence characteristics of GO could monitor the distribution of drug-loading systems in cells and the uptake of cells without the need for external dyes. Paclitaxel (PTX) is loaded via reduction-responsive disulfide bonds as a model medicine to examine the drug delivery potential of GO/PEG-Glu-Lys-Glu. The results showed that the drug loading content of PEG-Glu-Lys-Glu and GO/PEG-Glu-Lys-Glu to PTX is 7.11% and 8.97%, and the loading efficiency is 71.05% and 89.68%, respectively. It’s speculated that the π–π interaction between GO and PTX improved the drug-loading capacity and efficiency of GO/PEG-Glu-Lys-Glu. In vitro, in a simulated drug release test, at 48 h, the release of PTX was 85.51% at pH 5.0, 65.12% and 38.32% at pH 6.5 and 7.4, respectively. The cytotoxicity assay results showed that GO/PEG-Glu-Lys-Glu cell inhibition rate to MCF-7 cells was 7.36% at 72 h. The cell inhibition rate of GO/PEG-Glu-Lys-Glu/PTX system at 72 h was 92%, equivalent to free PTX. Therefore, the GO/PEG-Glu-Lys-Glu drug delivery system has the characteristics of good biocompatibility and sustainable release of PTX, which is expected to be applied in the field of tumor therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call