Abstract
The adsorbed film of cetyltrimethylammonium chloride (CTAC) at the tetradecane (C14) - water interface undergoes a first-order surface transition from two-dimensional liquid to solid states upon cooling. In this paper, we utilized this surface freezing transition to realize a spontaneous demulsification of Pickering emulsions stabilized by silica particles. In the temperature range above the surface freezing transition, the interfacial tension of silica laden oil-water interface was lower than CTAC adsorbed film, hence, stable Pickering emulsion was obtained by vortex mixing. However, the interfacial tension of CTAC adsorbed film decreased rapidly below the surface freezing temperature and became lower than the silica laden interface. The reversal of the interfacial tensions between silica laden and CTAC adsorbed films gave rise to Pickering emulsion demulsification by the desorption of silica particles from the oil-water interface. The exchange of silica particles and CTAC at the surface of emulsion droplets was also confirmed experimentally by using phase modulation ellipsometry at the oil-water interface.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have