Abstract

Based on deep learning, a Dust Ablation Trail Analysis (DATA) code package is developed to detect dust ablation trails in tokamaks, which is intended to analyze a large amount data of tokamak dusts. To validate and benchmark the DATA code package, 2440 plasma jet images are exploited for the training and test of the deep learning DATA code package, since plasma jets resemble the shape and size of dust ablation clouds in tokamaks. After being trained by 1920 plasma jet images, the DATA code package is able to locate 100% plasma jets, classify plasma jets with the accuracy of >99.9%, and output image skeleton information for classified plasma jets. The DATA code package trained by the plasma jet images is also used to analyze the dust ablation trails captured in the Experimental Advanced Superconducting (EAST) tokamak with the satisfactory performance, further verifying its applicability in the fusion dust ablation investigation. Based on its excellent performance presented here, it is demonstrated that our DATA code package is able to automatically identify and analyze dust ablation trails in tokamaks, which can be used for further detailed investigations, such as the three-dimensional reconstruction of dusts and their ablation trails.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call