Abstract

We have demonstrated the use of bulk antimonide based materials and type-II antimonide based superlattices in the development of large area mid-wavelength infrared (MWIR) focal plane arrays (FPAs). Barrier infrared photodetectors (BIRDs) and superlattice-based infrared photodetectors are expected to outperform traditional III–V MWIR and LWIR imaging technologies and are expected to offer significant advantages over II–VI material based FPAs. We have used molecular beam epitaxy (MBE) technology to grow InAs/GaSb superlattice pin photodiodes and bulk InAsSb structures on GaSb substrates. The coupled quantum well superlattice device offers additional control in wavelength tuning via quantum well sizes and interface composition, while the BIRD structure allows for device fabrication without additional passivation. As a demonstration of the large area imaging capabilities of this technology, we have fabricated mid-wavelength 1024 × 1024 pixels superlattice imaging FPAs and 640 × 512 MWIR arrays based on the BIRD concept. These initial FPA have produced excellent infrared imagery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call