Abstract
Smart healthcare systems integrated with advanced deep neural networks enable real-time health monitoring, early disease detection, and personalized treatment. In this work, a novel 3D AND-type flash memory array with a rounded double channel for computing-in-memory (CIM) architecture to overcome the limitations of conventional smart healthcare systems: the necessity of high area and energy efficiency while maintaining high classification accuracy is proposed. The fabricated array, characterized by low-power operations and high scalability with double independent channels per floor, exhibits enhanced cell density and energy efficiency while effectively emulating the features of biological synapses. The CIM architecture leveraging the fabricated array achieves high classification accuracy (93.5%) for electrocardiogram signals, ensuring timely detection of potentially life-threatening arrhythmias. Incorporated with a simplified spike-timing-dependent plasticity learning rule, the CIM architecture is suitable for robust, area- and energy-efficient in-memory arrhythmia detection systems. This work effectively addresses the challenges of conventional smart healthcare systems, paving the way for a more refined healthcare paradigm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.