Abstract

Harnessing multibit precision in nonvolatile memory (NVM)‐based synaptic core can accelerate multiply and accumulate (MAC) operation of deep neural network (DNN). However, NVM‐based synaptic cores suffer from the trade‐off between bit density and performance. The undesired performance degradation with scaling, limited bit precision, and asymmetry associated with weight update poses a severe bottleneck in realizing a high‐density synaptic core. Herein, 1) evaluation of novel differential mode ferroelectric field‐effect transistor (DM‐FeFET) bitcell on a crossbar array of 4 K devices; 2) validation of weighted sum operation on 28 nm DM‐FeFET crossbar array; 3) bit density of 223Mb mm−2, which is ≈2× improvement compared to conventional FeFET array; 4) 196 TOPS/W energy efficiency for VGG‐8 network; and 5) superior bit error rate (BER) resilience showing ≈94% training and 88% inference accuracy with 1% BER are demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.