Abstract

We demonstrate a native CNOT gate between two individually addressed neutral atoms based on electromagnetically induced transparency. This protocol utilizes the strong long-range interactions of Rydberg states to enable conditional state transfer on the target qubit when operated in the blockade regime. An advantage of this scheme is it enables implementation of multiqubit CNOT^{k} gates using a pulse sequence independent of qubit number, providing a simple gate for efficient implementation of digital quantum algorithms and stabilizer measurements for quantum error correction. We achieve a loss corrected gate fidelity of F_{CNOT}^{cor}=0.82(6), and prepare an entangled Bell state with F_{Bell}^{cor}=0.66(5), limited at present by laser power. We present a number of technical improvements to advance this to a level required for fault-tolerant scaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.