Abstract
Circadian clocks give rise to daily oscillations in behavior and physiological functions that often anticipate upcoming environmental changes generated by the Earth rotation. In model organisms a relationship exists between several genes affecting the circadian rhythms and latitude. We investigated the allele distributions at 116 000 single-nucleotide polymorphisms (SNPs) of 25 human clock and clock-related genes from the 1000Genomes Project, and at a reference data set of putatively neutral polymorphisms. The global genetic structure at the clock genes did not differ from that observed at the reference data set. We then tested for evidence of local adaptation searching for FST outliers under both an island and a hierarchical model, and for significant association between allele frequencies and environmental variables by a Bayesian approach. A total of 230 SNPs in 23 genes, or 84 SNPs in 19 genes, depending on the significance thresholds chosen, showed signs of local adaptation, whereas a maximum of 190 SNPs in 23 genes had significant covariance with one or more environmental variables. Only two SNPs from two genes (NPAS2 and AANAT) exhibit both elevated population differentiation and covariance with at least one environmental variable. We then checked whether the SNPs emerging from these analyses fall within a set of candidate SNPs associated with different chronotypes or sleep disorders. Correlation of five such SNPs with environmental variables supports a selective role of latitude or photoperiod, but certainly not a major one.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.