Abstract
Formerly, sand dune patterns were investigated mostly by aerial and satellite images, but more recently, geomorphometric analysis based on digital elevation models (DEMs) has become an important approach. In this paper, sand dune patterns of the Grand Erg Oriental (Sahara) are studied using the De Ferranti (2014) DEM, which is a blending of SRTM (Shuttle Radar Topography Mission), ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) and other elevation datasets. In the Grand Erg Oriental, there are four large-scale dune pattern types with gradual transitions between them and with several subtypes, namely P1, consisting of large, branching linear dunes; P2, a complex pattern including small-size and widely spaced star and dome dunes; P3, a network type created mostly from crescentic dunes; and finally, P4, consisting of large and closely spaced star dunes. The largest dunes with 90–100-m mean height can be found in the southern parts of the Grand Erg Oriental, where P1 and P4 patterns dominate, and these areas are also characterised by the most intensive sand accumulation with 25–30-m equivalent sand thickness. In the present study, we use regression analysis to investigate the functional relationships between sand dune characteristics. Further on, we have elaborated a DEM-based method to delineate dunes and calculate sand volumes and dune orientations. Comparing wind rose data and sand dune axis rose diagrams, it is concluded that in some parts of the Grand Erg Oriental, the present dune types and patterns are in agreement with the actual wind regime, but in other cases, the present dune patterns are at least partially the results of former wind regimes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.