Abstract

In this paper we consider the problem of optimizing the operation of a building heating system under the hypothesis that the building is included as an active consumer in a demand response program. Demand response requests to the building operational system come from an external market player or a grid operator. Requests assume the form of price–volume signals specifying a maximum volume of energy to be consumed during a given time slot and a monetary reward assigned to the participant in case it fulfills the conditions. A receding horizon control approach is adopted for the minimization of the energy bill, by exploiting a simplified model of the building. Since the resulting optimization problem is a mixed integer linear program which turns out to be manageable only for buildings with very few zones, a heuristics is devised to make the algorithm applicable to realistic size problems as well. The derived control law is tested on the realistic simulator EnergyPlus to evaluate pros and cons of the proposed algorithm. The performance of the suboptimal control law is evaluated on small- and large-scale test cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.