Abstract

This paper models a novel demand response (DR) trading strategy. In this model, the DR aggregator obtains the DR from the end-users via two types of DR programs, i.e. a time-of-use (TOU) program and an incentive-based DR program. Then, it offers this DR to the wholesale market. Three consumer sectors, namely residential, commercial and industrial, are included in this problem. The DR program is dependent on their corresponding load profiles during the studied time horizon. This paper uses a mixed-integer linear programming (MILP) problem and it is solved using the CPLEX solver through a stochastic programming approach in GAMS. The risk measure chosen to represent the load uncertainty of the users who are participating in the DR program is Conditional Value-at-Risk (CVaR). The proposed problem is simulated and assessed through a case study of a test system. The results indicate that the industrial loads play a major role in the power system and this directly affects the DR program. Moreover, the risk-averse decision-maker in this model favors a reduced participation in the DR programs when compared to a decision-maker who is risk-neutral, since the risk-averse decision maker prefers to be more secure against uncertainties. In other words, an increase in risk factor results in a decrease in the participation rate of the consumers in DR programs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call