Abstract

Electric Storage Water Heaters (ESWH) are a widespread solution to supply domestic hot water (DHW) to dwellings and other applications. The working principle of these units makes them a great resource for peak shaving, which is particularly important due to the level of penetration renewable energies are achieving and their intermittent nature. Renewable energy deployment in the electricity market translates into large electricity price fluctuations throughout the day for individual users. The purpose of this study was to find a demand–response strategy for the activation of the heating element based on a multiobjective minimization of electricity cost and user discomfort, assuming a known DHW consumption profile. An experimentally validated numerical model was used to perform an evaluation of the potential savings with the demand–response optimized strategy compared to a thermostat-based approach. Results showed that cost savings of approximately 12% can be achieved on a yearly basis, while even improving user thermal comfort. Moreover, increasing the ESWH volume would allow (i) more aggressive demand–response strategies in terms of cost savings, and (ii) higher level of uncertainty in the DHW consumption profile, without detriment to discomfort.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call