Abstract

Predicting citizens’ visiting behaviors to urban facilities is instrumental for city governors and planners to detect inequalities in urban opportunities and optimize the distribution of facilities and resources. Previous works predict facility visits simply using observed visit behavior, yet citizens’ intrinsic demands for facilities are not characterized explicitly, causing potential incorrect learned relations in the prediction results. In this article, to make up for this deficiency, we present a demand-driven urban facility visit prediction method that decomposes citizens’ visits to facilities into their unobservable demands and their capability to fulfill them. Demands are expressed as the function of regional demographic attributes by a neural network, and the fulfillment capability is determined by the urban region’s spatial accessibility to facilities. Extensive evaluations of datasets of three large cities confirm the efficiency and rationality of our model. Our method outperforms the best state-of-the-art model by 8.28% on average in facility visit prediction tasks. Further analyses demonstrate the reasonableness of recovered facility demands and their relationship with citizen demographics. For instance, senior citizens tend to have higher medical demands but lower shopping demands. Meanwhile, estimated capabilities and accessibilities provide deeper insights into the decaying accessibility with respect to spatial distance and facilities’ diverse functions in the urban environment. Our findings shed light on demand-driven urban data mining and demand-based urban facility planning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call