Abstract
Three-dimensional discrete element method (DEM) is employed to model the published calibration chamber test of a closed-ended displacement pile driven in sand. To achieve large chamber-to-pile and pile-to-particle size ratios for unbiased predictions, a high-performance graphics processing unit-powered DEM code is utilised in conjunction with the axisymmetric assumption and particle refinement method. The DEM parameters are first calibrated against the drained triaxial compression test data on Fontainebleau sand. Then, the DEM modelling of pile driving demonstrates quantitative agreement with the experimental counterpart in terms of cone resistance, stress contours, and distributions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have