Abstract

BackgroundThe pyrethroid class of insecticides, including deltamethrin, is being used as substitutes for organochlorines and organophosphates in pest-control programs because of their low environmental persistence and toxicity. This study was aimed to investigate the impact of commonly used pesticides (deltamethrin) on the blood and tissue oxidative stress level in catfish (Clarias gariepinus); in addition to the protective effect of α-tocopherol on deltamethrin induced oxidative stress.Catfish were divided into three groups, 1st control group include 20 fish divided into two tanks each one contain 10 fish, 2nd deltamethrin group, where Fish exposed to deltamethrin in a concentration (0.75 μg/l) and 3rd Vitamin E group, Fish exposed to deltamethrin and vitamin E at a dose of 12 μg/l for successive 4 days.Serum, liver, kidney and Gills were collected for biochemical assays. Tissue oxidative stress biomarkers malondialdhyde (MDA) and catalase activity in liver, kidney and gills tissues, serum liver enzymes (ALT and AST), serum albumin, total protein, urea and creatinine were analysed.ResultsOur results showed that 48 h. exposure to 0.75 μg/l deltamethrin significantly (p < 0.05) increased lipid peroxidation (MDA) in the liver, kidney and gills while catalase activity was significantly decreased in the same tissues. This accompanied by significant increase in serum ALT, AST activity, urea and creatinine and a marked decrease in serum albumin and total proteins.ConclusionsIt could be concluded that deltamethrin is highly toxic to catfish even in very low concentration (0.75 μg/l). Moreover the effect of deltamethrin was pronounced in the liver of catfish in comparison with kidneys and gills. Moreover fish antioxidants and oxidative stress could be used as biomarkers for aquatic pollution, thus helping in the diagnosis of pollution. Adminstration of 12 μg/l α-tocopherol restored the quantified tissue and serum parameters, so supplementation of α-tocopherol consider an effective way to counter the toxicity of deltamethrin in the catfish.

Highlights

  • The pyrethroid class of insecticides, including deltamethrin, is being used as substitutes for organochlorines and organophosphates in pest-control programs because of their low environmental persistence and toxicity

  • We aimed to investigate the effects of deltamethrin on some oxidative biomarkers (MDA and catalase activities) and some serum biochemical parameters, alanine transaminase (ALT), aspartate transaminase (AST), total protein, albumin, urea and creatinine

  • The results are summarised in tables and figure as follows: Table 1: demonstrates that deltamethrin (0.75 μg/l) significantly increased the activities of AST and ALT, while significantly decreased the level of serum total protein and albumin compared to control group

Read more

Summary

Introduction

The pyrethroid class of insecticides, including deltamethrin, is being used as substitutes for organochlorines and organophosphates in pest-control programs because of their low environmental persistence and toxicity. Catfish were divided into three groups, 1st control group include 20 fish divided into two tanks each one contain 10 fish, 2nd deltamethrin group, where Fish exposed to deltamethrin in a concentration (0.75 μg/l) and 3rd Vitamin E group, Fish exposed to deltamethrin and vitamin E at a dose of 12 μg/l for successive 4 days. The main advantages of pyrethroids that made it successively replacing organophosphrus pesticides are their photostability, high effectiveness even in low concentration, disintegration, and low toxicity in birds and mammals [1]. Effluents of agricultural and industrial processes contain highly toxic chemicals like pesticides that lead to pollution of aquatic environments including rivers, ponds and lakes. The accumulation and persistence of insecticide and pesticides in the aquatic environment constitute a threat to biological life, as witnessed by the chronic and acute poisoning of fish and other aquatic organisms [3]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call