Abstract

Delta-conotoxins are Conus peptides that inhibit inactivation of voltage-gated sodium channels. The suggestion that delta-conotoxins might be an essential component of the venoms of fish-hunting cone snails which rapidly immobilize their prey [Terlau, H., Shon, K., Grilley, M., Stocker, M., Stühmer, W., and Olivera, B. M. (1996) Nature 381, 148-151] has not been tested. On the basis of cDNA cloning, all of the fish-hunting Conus analyzed yielded at least one delta-conotoxin sequence. In addition, one delta-conotoxin isolated from the venom of Conus striatus had an amino acid sequence identical to that predicted from cDNA cloning. This new peptide exhibited properties of delta-conotoxins: it targeted sodium channels and potentiated action potentials by slowing channel inactivation. Homologous sequences of delta-conotoxins from two groups (clades) of related fish-hunting Conus species share consensus features but differ significantly from the two known delta-conotoxins from mollusc-hunting Conus venoms. Three large hydrophobic amino acids were conserved; analogues of the previously described delta-conotoxin PVIA with alanine substituted for the conserved amino acids F9 and I12 lost substantial biological activity. In contrast, both the T8A and K13A delta-conotoxin PVIA analogues, where substitutions were at nonconserved loci, proved to be biologically active. Taken together, our results indicate that a cladistic approach can identify amino acids critical for the activity of conotoxins and provide extensive information as to which amino acid substitutions can be made without significant functional consequences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.