Abstract

Reactive oxygen species (ROS) play a pivotal role in the development of pathological cardiac hypertrophy. Delphinidin, a natural flavonoid, was reported to exert marked antioxidative effects. Therefore, we investigated whether delphinidin ameliorates pathological cardiac hypertrophy via inhibiting oxidative stress. In this study, male C57BL/6 mice were treated with DMSO or delphinidin after surgery. Neonatal rat cardiomyocytes (NRCMs) were treated with angiotensin II (Ang II) and delphinidin in vitro. Eighteen-month-old mice were administered delphinidin to investigate the effect of delphinidin on aging-related cardiac hypertrophy. Through analyses of hypertrophic cardiomyocyte growth, fibrosis and cardiac function, delphinidin was demonstrated to confer resistance to aging- and transverse aortic constriction (TAC)-induced cardiac hypertrophy in vivo and attenuate Ang II-induced cardiomyocyte hypertrophy in vitro by significantly suppressing hypertrophic growth and the deposition of fibrosis. Mechanistically, delphinidin reduced ROS accumulation upon Ang II stimulation through the direct activation of AMP-activated protein kinase (AMPK) and subsequent inhibition of the activity of Rac1 and expression of p47phox. In addition, excessive levels of ERK1/2, P38 and JNK1/2 phosphorylation induced by oxidative stress were abrogated by delphinidin. Delphinidin was conclusively shown to repress pathological cardiac hypertrophy by modulating oxidative stress through the AMPK/NADPH oxidase (NOX)/mitogen-activated protein kinase (MAPK) signaling pathway.

Highlights

  • Heart failure is a growing public health problem [1]

  • The decreased left ventricular end-systolic dimension (LVESd) and left ventricular end-diastolic dimension (LVEDd) and increased left ventricular ejection fraction (LVEF) and left ventricular shortening rate (LVFS) compared with those of the sham surgery group further confirmed the effect of delphinidin at the high dosage on cardiac function (Figure 2B)

  • These results suggested that treatment with delphinidin at the high dosage could inhibit pathological hypertrophy, oxidative stress, and cardiac dysfunction caused by pressure overload

Read more

Summary

Introduction

Pathological cardiac hypertrophy induced by aging or mechanical and neurohormonal stimuli, such as aortic stenosis, valvular insufficiency and hypertension, is the main predisposing factor for heart failure and sudden cardiac death [2,3,4]. Neurohormone blockers, such as www.aging-us.com angiotensin (Ang) II receptor AT1 blockers, are used to clinically treat pathological myocardial hypertrophy and heart failure, but these drugs are not effective in reversing heart failure [5, 6]. The AMPK/NOX signaling axis may be closely related to the regulation of cardiac hypertrophy

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call