Abstract
This study focused on the comparative analysis of biosorption performance of Delonix regia seed pod toward the removal of Rhodamine B (RB) from simulated solution using native (DRSP) and chemically treated form (ADRSP). The surface morphology, structural analysis, textural properties, and thermal analysis of DRSP and ADRSP were examined using scanning electron microscopy (SEM), BET analysis, Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA), respectively. FTIR analysis concluded that surface functional groups like hydroxyl –OH stretching, C–N stretching, and C = C stretching of the aromatic ring were largely responsible for the attachment of RB. The chemical treatment enhanced the surface morphology of D. regia seed in terms of heterogeneity, distinct depth cavities, and irregular pores responsible for RB biosorption. The biosorption of RB was investigated using parametric analyses such as solution pH, biosorbent dosage, contact time, initial RB concentration, and operating temperature. The obtained equilibrium data were fitted with different isotherm and kinetic models. Langmuir isotherm model and pseudo-second-order kinetic were well suitable for the biosorption of RB using DRSP and ADRSP. The maximum monolayer biosorption capacities (mg/g) of DRSP and ADRSP were predicted to be 39.37 and 60.61, respectively. Using thermodynamic principles, the removal of RB was found to be thermodynamically feasible, endothermic, and spontaneous process. The results of the present study proved that DRSP and ADRSP can be identified as promising biosorbents for the removal of RB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.