Abstract

In the present investigation seaweeds of macroalgae like Kappaphycus alvarezii, Gracilaria salicornia and Gracilaria edulis used as novel biosorbent in native (KA, GS, GE) and ethanol modified (EKA, EGS, EGE) for Rhodamine B (RB) removal from aqueous solution in batch process. Effect of various biosorption parameters such as pH, initial concentration of RB, biosorbent dosage and contact time were studied. The maximum biosorption capacity determined as 9.84 (KA), 11.03 (GS), 8.96 (GE), 112.35 (EKA), 105.26 (EGS) and 97.08 mg/g (EGE), respectively towards the removal of RB from aqueous solutions. Better removal of RB was observed using EKA, EGS, and EGE biosorbents at 2.0 pH. The characterizations of the biosorbents were performed using Scanning Electron microscope and Fourier Transform Infrared Spectroscopy. Biosorption equilibrium data evaluated using Langmuir, Freundlich, Temkin, Dubinin-Radushkevich and Jovanovic isotherm model. The Langmuir isotherm model best suited the equilibrium data for all the biosorbents studied. The rate of RB removal subjected to kinetic analysis using pseudo-first-order, pseudo-second-order, intra-particle diffusion and Elovich models. Pseudo-second-order kinetic model better described the experimental data of the RB biosorption. Desorption studies performed using 0.1 M sodium hydroxide as eluting agents for regeneration and recycle analysis. The recyclability of the six biosorbents showed consistent biosorption capacity towards RB removal up to the entire three cycles. The studied biosorbents sourced from large volume and easily available, further biosorption performance indicated that the KA, GS, GE, EKA, EGS and EGE could be used as efficient, alternative and eco-friendly biosorbents for the removal of harmful dyes in the environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call