Abstract
AbstractLocalized excitation in traditional organic photocatalysts typically prevents the generation and extraction of photo‐induced free charge carriers, limiting their activity enhancement under illumination. Here, we enhance delocalized photoexcitation of small molecular photovoltaic catalysts by weakening their electron‐phonon coupling via rational fluoro‐substitution. The optimized 2FBP‐4F catalyst we develop here exhibits a minimized Huang–Rhys factor of 0.35 in solution, high dielectric constant and strong crystallization in the solid state. As a result, the energy barrier for exciton dissociation is decreased, and more importantly, polarons are unusually observed in 2FBP‐4F nanoparticles (NPs). With the increased hole transfer efficiency and prolonged charge carrier lifetime highly related to enhanced exciton delocalization, the PM6 : 2FBP‐4F heterojunction NPs at varied concentration exhibit much higher optimized photocatalytic activity (207.6–561.8 mmol h−1 g−1) for hydrogen evolution than the control PM6 : BP‐4F and PM6 : 2FBP‐6F NPs, as well as other reported photocatalysts under simulated solar light (AM 1.5G, 100 mW cm−2).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.