Abstract
Abstract The sustainable management of groundwater resources is crucial for ecological diversity, human health, and economic growth. This study employs scientific concepts and advanced techniques, including the analytic hierarchy process (AHP) and Fuzzy-AHP, to identify groundwater potential zones (GWPZs). Thematic maps representing drainage density, elevation, soil, geomorphology, slope, land use and land cover, and rainfall are used to delineate the GWPZs. Both techniques are employed to assign weights to these thematic maps based on their characteristics and water potential. The study revealed that in the investigated area, 17.76 and 18.27% of the final GWPZs (AHP and Fuzzy-AHP) can be classified as having poor potential, while 72.79 and 71.07% are categorized as having moderate potential. Moreover, 9.45 and 10.69% of the final GWPZs are identified as having high potential using the AHP and Fuzzy-AHP models, respectively. Receiver operating characteristics (ROCs) analysis is employed to validate these findings, demonstrating that the Fuzzy-AHP technique achieves an accuracy of 74% in identifying GWPZs in the region. This study utilizes the best method derived from both models to identify 26 suitable locations for artificial recharge sites. The reliable findings of this research offer valuable insights into decision-makers and water users in the Kinnerasani Watershed.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have