Abstract

We identified regions with low Schottky barrier height on 4H-SiC surfaces by the electrochemical deposition of ZnO. When we adopt an appropriate deposition voltage, ZnO grew preferentially at the regions with the low Schottky barrier height. Thus, we were able to identify the ZnO film only at these regions if we stopped the deposition at a proper time. We compared positions of the deposited film and etch pit after molten NaOH etching. As a result, in a bulk 4H-SiC, the films were deposited around some of micropipe positions. On the other hand, in an epitaxial 4H-SiC layer, although approximately a half of deposited films seemed to grow at the etch-pit defect positions, other deposited films were grown at positions without etch-pit defects. Therefore the Schottky barrier heights were reduced by not only defects emerging as etch pits but also other kind of origins in epitaxial 4H-SiC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call