Abstract
Optokinetic eye movements are crucial for keeping a stable image on the retina during movements of the head. These eye movements can be differentiated into a cortically generated response (optokinetic look nystagmus) and the highly reflexive optokinetic stare nystagmus, which is controlled by circuits in the brainstem and cerebellum. The contributions of these infratentorial networks and their functional connectivity with the cortical eye fields are still poorly understood in humans. To map ocular motor centres in the cerebellum and brainstem, we studied stare nystagmus using small-field optokinetic stimuli in the horizontal and vertical directions in 22 healthy subjects. We were able to differentiate ocular motor areas of the pontine brainstem and midbrain in vivo for the first time. Direction and velocity-dependent activations were found in the pontine brainstem (nucleus reticularis, tegmenti pontis, and paramedian pontine reticular formation), the uvula, flocculus, and cerebellar tonsils. The ocular motor vermis, on the other hand, responded to constant and accelerating velocity stimulation. Moreover, deactivation patterns depict a governing role for the cerebellar tonsils in ocular motor control. Functional connectivity results of these hubs reveal the close integration of cortico-cerebellar ocular motor and vestibular networks in humans. Adding to the cortical concept of a right-hemispheric predominance for visual-spatial processing, we found a complementary left-sided cerebellar dominance for our ocular motor task. A deeper understanding of the role of the cerebellum and especially the cerebellar tonsils for eye movement control in a clinical context seems vitally important and is now feasible with functional neuroimaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.