Abstract

Deletions on the mouse Y-chromosome long arm (MSYq) lead to teratozoospermia and in severe cases to infertility. We find that the downstream transcriptional changes in the testis resulting from the loss of MSYq-encoded transcripts involve upregulation of multiple X- and Y-linked spermatid-expressed genes, but not related autosomal genes. Therefore, this indicates that in normal males, there is a specific repression of X and Y (gonosomal) transcription in post-meiotic cells, which depends on MSYq-encoded transcripts. Together with the known sex ratio skew in favour of females in the offspring of fertile MSYqdel males, this strongly suggests the existence of an intragenomic conflict between X- and Y-linked genes. Two potential antagonists in this conflict are the X-linked multicopy gene Xmr and its multicopy MSYq-linked relative Sly, which are upregulated and downregulated, respectively, in the testes of MSYqdel males. Xmr is also expressed during meiotic sex chromosome inactivation (MSCI), indicating a link between the MSCI and the MSYq-dependent gonosomal repression in spermatids. We therefore propose that this repression and MSCI itself are evolutionary adaptations to maintain a normal sex ratio in the face of X/Y antagonism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call