Abstract

Graph-deletion problems involve deleting a small number of vertices so that the resulting graph belong to a given hereditary graph class. We initiate a study of a natural variation of the problem of deletion to scattered graph classes. We want to delete at most k vertices so that each connected component of the resulting graph belongs to one of the constant number of graph classes. As our main result, we show that this problem is non-uniformly fixed-parameter tractable (FPT) when the deletion problem corresponding to each of the constant number of graph classes is known to be FPT and the properties that a graph belongs to these classes are expressible in Counting Monodic Second Order (CMSO) logic. While this is shown using some black box theorems in parameterized complexity, we give a faster FPT algorithm when each of the graph classes has a finite forbidden set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.