Abstract

BackgroundIn chronic kidney disease (CKD), blood vessels are permanently exposed to uremic toxins such as indoxyl sulfate (IS). We hypothesized that IS could alter vascular tone and that reducing its serum concentration could be beneficial. DesignWe studied acute and longer-term effects of IS and AST-120, an oral charcoal adsorbent, on vascular reactivity, endothelium integrity and expression of adhesion molecules VCAM-1 and ICAM-1 in aortic rings of normal and uremic wild type (WT) mice in vitro, and the cardiovascular effects of AST-120 in both WT and apoE−/− mice with CKD in vivo. ResultsIn vitro, 1.0 mM IS acutely reduced vascular relaxation (64% for IS 1.0 mM vs. 80% for control, p < 0.05). The effect was more marked after 4 days exposure (39% for IS 1.0 mM 4 days; p < 0.001, prolonged vs. acute exposure), and was associated with endothelial cell loss and upregulation of ICAM-1/VCAM-1 expression. In vitro, AST-120 restored normal vascular function and prevented IS induced endothelial cell loss and ICAM-1/VCAM-1 upregulation. In vivo, AST-120 treatment of CKD mice (1) improved vascular relaxation (72% vs. 48% maximal relaxation in treated vs. untreated mice, p < 0.001), (2) reduced aortic VCAM-1 and ICAM-1 expression, (3) decreased aorta systolic expansion rate (9 ± 3% CKD vs. 14 ± 3% CKD + AST-120, p < 0.02), and (4) prevented the increase in pulse wave velocity (3.56 ± 0.17 m/s CKD vs. 3.10 ± 0.08 m/s CKD + AST-120, p < 0.006). Similar changes were observed in apoE−/− mice. ConclusionIS appears to be an important contributor to the vascular dysfunction associated with CKD. AST-120 treatment ameliorates this dysfunction, possibly via a decrease in serum IS concentration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call