Abstract
Flaws in Zr-2.5Nb alloy pressure tubes in CANDU nuclear reactors are susceptible to a crack initiation and growth mechanism known as Delayed Hydride Cracking (DHC), which is a repetitive process that involves hydrogen diffusion, hydride precipitation, growth and fracture of the hydrided region at the flaw-tip. In-service flaw evaluation requires an analysis to demonstrate DHC will not initiate from the flaw. The work presented in this paper examines DHC initiation behavior from simulated debris fretting flaws. Groups of cantilever beam specimens containing V-notches with root radii of 15, 30 and 100 μm were prepared from two unirradiated pressure tubes hydrided to a nominal hydrogen concentration of 57 wt. ppm. The specimens were loaded to different stress levels that straddled the threshold value predicted by an engineering model, and subjected to multiple thermal cycles relevant to reactor operating conditions to form hydrides at the flaw-tip. Threshold conditions for DHC initiation were established for the flaw geometries and thermal cycling conditions used in this program. Test results indicate that the susceptibility to DHC initiation was affected by material variability and notch root radius. The results are also compared with model predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.