Abstract

Delayed hydride cracking (DHC) is an important crack initiation and growth mechanism in Zr-2.5Nb alloy pressure tubes of CANDU nuclear reactors. DHC is a repetitive process that involves hydrogen diffusion, hydride precipitation, growth, and fracture of a hydrided region at a flaw tip. In-service flaw evaluation requires analyses to demonstrate that DHC will not initiate from the flaw. The work presented in this paper examines DHC initiation behavior from V-notches with root radii of 15 μm, 30 μm, and 100 μm, which simulate service-induced debris fretting flaws. Groups of notched cantilever beam specimens were prepared from two unirradiated pressure tubes hydrided to a nominal hydrogen concentration of 57 wt. ppm. The specimens were loaded to different stress levels that straddled the threshold value predicted by an engineering process-zone (EPZ) model, and subjected to multiple thermal cycles representative of reactor operating conditions to form hydrides at the notch tip. Threshold conditions for DHC initiation were established for the notch geometries and thermal cycling conditions used in this program. Test results indicate that the resistance to DHC initiation is dependent on notch root radius, which is shown by optical metallography and scanning electron microscopy to have a significant effect on the distribution and morphology of the notch-tip reoriented hydrides. In addition, it is observed that one tube is less resistant to DHC initiation than the other tube, which may be attributed to the differences in their microstructure and texture. There is a reasonable agreement between the test results and the predictions from the EPZ model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.