Abstract
An experimental and theoretical study of delayed fracture of polydimethlsiloxane (PDMS) is presented. Previous works have demonstrated that delayed fracture in single edge notch specimens is caused by time dependent damage due to chain scission. Here we study the interactions between damage and the elastic field using different specimens and crack geometries with blunt and sharp cracks. Our experiments show that initial toughness is not well defined, as stable slow crack growth can occur over a range of applied loads. Our experiments demonstrate that there is a universal relation between crack growth rate and applied energy release rate. A model coupling the nonlinear elastic deformation and rate dependent bond scission is proposed and is in good agreement with experimental data.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have