Abstract

BackgroundHypoxia-ischemia (H-I) can produce widespread neurodegeneration and deep cerebral white matter injury in the neonate. Resident microglia and invading leukocytes promote lesion progression by releasing reactive oxygen species, proteases and other pro-inflammatory mediators. After injury, expression of the gelatin-degrading matrix metalloproteinases (MMPs), MMP-2 and MMP-9, are thought to result in the proteolysis of extracellular matrix (ECM), activation of cytokines/chemokines, and the loss of vascular integrity. Thus, therapies targeting ECM degradation and progressive neuroinflammation may be beneficial in reducing H-I – induced neuropathy. Minocycline has MMP-inhibitory properties and is both anti-inflammatory and neuroprotective. AG3340 (prinomastat) is an MMP inhibitor with high selectivity for the gelatinases. The purpose of this study was to determine whether these compounds could limit H-I – induced injury when administered at a delayed time point.MethodsSprague-Dawley rats were exposed to H-I at postnatal day 7 (P7), consisting of unilateral carotid artery ligation followed by 90 min exposure to 8% O2. Minocycline, AG3340, or vehicle were administered once daily for 6 days, beginning 24 hours after insult. Animals were sacrificed at P14 for neurohistological assessments. Immunohistochemistry was performed to determine the degree of reactive astrogliosis and immune cell activation/recruitment. Neural injury was detected using the Fluoro-Jade stain, a marker that identifies degenerating cells.ResultsCD11b and glial fibrillary acidic protein (GFAP) immunopositive cells increased in ipsilateral cortex after treatment with vehicle alone, demonstrating microglia/macrophage recruitment and reactive astrogliosis, respectively. Fluoro-Jade staining was markedly increased throughout the fronto-parietal cortex, striatum and hippocampus. Treatment with minocycline or AG3340 inhibited microglia/macrophage recruitment, attenuated astrogliosis and reduced Fluoro-Jade staining when compared to vehicle alone.ConclusionThe selective gelatinase inhibitor AG3340 showed equal efficacy in reducing neural injury and dampening neuroinflammation when compared to the anti-inflammatory compound minocycline. Thus, MMP-2 and MMP-9 may be viable therapeutic targets to treat neonatal brain injury.

Highlights

  • Hypoxia-ischemia (H-I) can produce widespread neurodegeneration and deep cerebral white matter injury in the neonate

  • Immunohistochemistry was performed on sections from untreated and vehicle-treated animals that were exposed to H-I (N = 5 per group) to assess the immune cell response using anti-OX-42, an antibody that binds the CD11b antigen that is expressed on cell surfaces of microglia and macrophages

  • Closer examination revealed that OX-42 – positive cells displayed an amoeboid morphology in the ipsilateral striatum (Figure 1D) and cortex (Figure 1E) that is consistent with activated microglia or macrophages, while CD11b – expressing cells in contralateral striatum exhibited a ramified morphology

Read more

Summary

Introduction

Hypoxia-ischemia (H-I) can produce widespread neurodegeneration and deep cerebral white matter injury in the neonate. Therapies targeting ECM degradation and progressive neuroinflammation may be beneficial in reducing H-I – induced neuropathy. The maladaptive neurobiological response can be severe, resulting in deep cerebral white matter injury and substantial neuronal loss [2]. Previous studies have linked oxidative stress [9,10] and NMDA receptor activation [11] to white matter injury, while glutamatergic blockade has been shown to reduce H-I-induced infarction [12,13,14] and white matter damage [15]. Though excitotoxicity and free radical production are key contributors to the neuropathology of these lesions, there is a growing interest in identifying additional therapies to limit the progressive neuroinflammation that accompanies ischemic injury

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.