Abstract

Medical-care Internet of Things enables rapid medical assistance by providing comprehensive and clear healthy information. However, due to the limited infrastructure, it is difficult to quickly and securely transmit medical-care information in poverty-stricken or disaster-stricken areas. To tackle the above situation, in this article, we propose a delay-sensitive secure nonorthogonal multiple access (NOMA) transmission scheme with the high-altitude platform (HAP) and low-altitude platforms (LAPs) cooperated to securely provide delay-sensitive medical-care services. In the proposed scheme, we first design a novel HAP–LAP secure transmission framework to provide NOMA communication services to multiple hotspots. Constrained by the limited power and spectrum, we formulate an optimization problem, such that the privacy information delay is minimized. For thisnonconvex optimization problem, we design an alternating optimization framework, where the power, spectrum, and LAPs’ location are tackled in turn. In addition, we theoretically analyze the performance superiority compared with the orthogonal multiple access scheme and derive the secrecy outage probability closed-form expression. Finally, numerical results show the performance superiority of the proposed scheme compared with the current works with respect to the secure information delay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.