Abstract
Single-ring all-pass filters with various coupling ratios are designed, fabricated, and characterized to assess the validity of the split-step time-domain modeling approach, which is considered for direct simulation of time-domain characteristics, such as optical delay, of various ring resonator devices. When the coupling ratio of the single-ring all-pass filter is 0.4 and 0.8, the delay time is measured to be about 145 and 42 ps respectively, which is comparable to the time-domain modeling results of 151 and 47 ps respectively. The measurements for two- and three-ring all-pass filters are also found to agree quite well with the simulation results. With these results it is confirmed that the split-step time-domain model could be efficiently incorporated into an optical-communication simulation module for ring resonator delay components in an all-optical packet switching system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.