Abstract

Asynchronous designs have been touted as having potential advantages in average performance, power consumption, modularity and tolerance of metastability as compared to traditional synchronous logic. While delay-insensitive (DI) asynchronous circuits are theoretically the most desirable type of asynchronous logic because they make the weakest timing assumptions, the complexity of implementing DI circuits in CMOS or similar technologies may make them impractical to use. The fact that event-based DI circuits are ill matched to CMOS does not necessarily mean that they are inherently inefficient, however. In this paper we show that using Rapid Single Flux Quantum (RSFQ) superconducting circuits, in which information is represented as discrete voltage pulses or magnetic flux quanta, many powerful DI circuit primitives can be implemented at least as efficiently as Boolean logic gates. Since DI logic also alleviates the severe clock skew problems that can be expected at the switching speeds approaching a terahertz in this technology, it may well be a more practical basis for digital circuit design than alternatives traditionally used for CMOS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.