Abstract

This paper mainly studies the synchronization problem of memristor-based bidirectional associative memory neural networks (MBAMNNs) via finite-time technology. Different from the existing neural network dynamic models, the given model in this paper is focused on the impact of parameter perturbation and strong mismatch, where strong mismatch includes parameter mismatch and time-varying delay mismatch. These characteristics can make the model be closer to the actual situation. A delay-independent feedback control scheme, which can stabilize the error system within finite-time regardless of whether the past state is known or not, is designed. It is worth noting that the constant is replaced by a function with the exponential term in the delay-independent controller, which can save the control cost to a certain extent. Based on the integral inequality technique, some sufficient conditions for MBAMNNs to converge to the equilibrium point within finite-time are provided. The validity and correctness of the theoretical results are finally confirmed by numerical simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.