Abstract
BackgroundCortico-muscular coherence (CMC) between the cerebral cortex and muscle activity is an effective tool for studying neural communication in the motor control system. To accurately evaluate the coherence between electroencephalogram (EEG) and electromyogram (EMG) signals, it is necessary to accurately calculate the time delay between physiological signals to ensure signal synchronization. New methodWe proposed a new delay estimation method, named wavelet coherence time lag (WCTL) and the significant increase areas (SIA) index as a measure of the specific region enhancement effect of the magnitude squared coherence (MSC) image. ResultsThe grip strength level had a small effect on the information transmission time from the cortex to the muscles, while the transmission time from the cortex to different muscle channels was different for the same task. A positive correlation was found between the grip strength level and the SIA index on the β band of C3-B and the α and β bands of C3-FDS.Comparison with Existing Method: The WCTL method was found to accurately calculate the delay time even when the number of repeated segments was low in a simple motor control model, and the results were more accurate than the rate of voxels change (RVC) and CMC with time lag (CMCTL) methods. ConclusionsThe WCTL is an effective method for detecting the transmission time of information between the cortex and muscles, laying the foundation for future rehabilitation treatment for stroke patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.