Abstract

This paper proposes a new approach to deal with the problem of stability under arbitrary switching of continuous-time switched time-delay systems represented by TS fuzzy models. The considered class of systems, initially described by delayed differential equations, is first put under a specific state space representation, called arrow form matrix. Then, by constructing a pseudo-overvaluing system, common to all fuzzy submodels and relative to a regular vector norm, we can obtain sufficient asymptotic stability conditions through the application of Borne and Gentina practical stability criterion. The stability criterion, hence obtained, is algebraic, is easy to use, and permits avoiding the problem of existence of a common Lyapunov-Krasovskii functional, considered as a difficult task even for some low-order linear switched systems. Finally, three numerical examples are given to show the effectiveness of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.