Abstract

In order to study the dehydrogenation reaction mechanism of ultra-low concentration methane in a thermal reverse-flow reactor, the effects of the cyclic period (120s–240s), the lean methane volume flow (90 Nm3/h to 180 Nm3/h), and the methane concentration (0.2 vol% to 0.8 vol%) on the dehydrogenation performance were studied systematically by using a thermal reverse-flow experimental system. When the methane concentration is 0.2 vol%, the reactor can achieve self-heat maintaining operation. With the increase in the methane concentration, the width of the high-temperature zone, the exhaust gas temperature, the methane conversion rate, and the maximum temperature of the heat-accumulator bed increase. With the increase in the lean methane volume flow, the width of the high-temperature zone, the distance between the center of the high-temperature zone and the center of the reactor, the maximum temperature, the exhaust gas temperature, and the methane conversion rate increase. With the increase in the cyclic period, the exhaust gas temperature and the deviation of the high-temperature zone increase, but the methane conversion rate and the maximum temperature decrease slightly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.